

Introduction

A Short History of Tomorrow

In 2024, the G10 set out to create something extraordinary: an exhibition inspired by Michel Foucault's idea of epistemes—those thrilling moments in history when knowledge takes a sharp turn, flipping our understanding of reality on its head. Think of it like this: when the microscope was invented in the 17th century, it didn't just magnify tiny things—it shattered ancient myths and revealed a hidden universe of microbes. That's the power of an episteme.

But here's where it gets even more exciting. We noticed something fascinating: throughout history, groundbreaking artists like Rembrandt, Marcel Duchamp, and Andy Warhol seemed to be in a creative conversation with the scientists of their time. Art and science, colliding and collaborating, pushing the boundaries of what was possible. This electric dialogue became the heartbeat of our exhibition.

And then there's Foucault's dispositif—a special word for the invisible systems (think institutions, technologies, and power structures) that shape how society operates. It's all about how knowledge and power intertwine to define our world.

So, why seven steps? Think of it as a journey—a winding path through the history of ideas, where art, science, and power collide in the most unexpected ways. Ready to take the first step? Let's go.

Step 1: Plato's Cave: The Original Reality Show

Picture this: You're chained in a dark cave, forced to stare at shadows dancing on a wall. That's Plato's 2,400-year-old metaphor for his BIG idea—that "true reality" is a perfect, unchanging world outside our messy human experience. Philosophers, he said, could escape the cave and find this truth through reason and logic.

This idea stuck like glue. For centuries, Western science, religion, and art obsessed over finding the "real world" out there—whether in God's heaven, mathematical laws, or the human soul. But here's the twist: AI is bulldozing Plato's cave. Algorithms now mine our thoughts, predict our desires, and even mimic our creativity. There's no "inner truth" left to protect—just data patterns, says thinker Riccardo Manzotti. Plato's wall between "inside" and "outside"? Crumbling like a cookie.

Living On Islands In Greece!

Plato reflected on the perils of living on a border near the seaside during his time, as an island was susceptible to dangers from pirates and “bad ideas” (incorrect worldviews) from refugees and traders. These factors could negatively impact the quality of life for local people. Water played a significant role in Plato’s thinking, bringing various dangers. The center of an island offered greater safety and was remarkably considered the home of the Logos as well. Logos, meaning here the word of truth and reason. This concept of Logos or truth and reason being safely in the center has influenced Western art, science, and politics for centuries. Many artists, philosophers, and scientists have sought to challenge this Platonic worldview with vigor, or as Michel Foucault called it, the Platonic dispositif.

I would like to put Plato at the forefront of this book because he profoundly shaped Western culture with the distinction between an inner world and an outer world, as symbolized by the man in chains inside the cave. Unlike most other philosophers who came after Plato, we still continue to grapple with his legacy, as his worldview is still very active in science and art today and hinders new thoughts necessary in our time to navigate into a new era of digitalization. Let’s travel from Plato’s Cave to the basic ideas of AI and see slowly why Plato is still so much with us today, although he seems almost forgotten. The cave story seems innocent and agreeable, but it hides deep untruths about human existence, slowly getting clearer in our days as AI gives new perspectives in understanding the human mind.

The philosopher Riccardo Manzotti brings us on a trail leading directly from Plato to AI with his text, “Can Machines Think?” Central to Manzotti’s thinking is that the inner world is a nonexistent fantasy structure with no real foundation, just as the word ‘soul’ is without any meaning.

Riccardo Manzotti is not alone in his skepticism about an existing inner world. Buddhists were always very skeptical about what they called “an inherent existence of things.”

Buddhists claim that the world of things has no inherent existence and that to understand the entanglement between an inner and outer world is their main task to perform in this life. It is a lifelong task, and enlightenment is the reward to solve this gap between an inner and outer world. Buddhists think this is the most important

task to do in this life. The mantra they use: "Form is emptiness and emptiness is form." So inner and outer are intertwined.

Things do not exist independently of each other in Buddhist philosophy, but are entangled in order to perceive them. In this sense, Buddhism and AI get very close in their methodology to define reality by breaking down barriers between a separate inner and outer world.

We come across these ideas in another form in a central text later in our book by Rupert Sheldrake, where Sheldrake describes a common memory, a phenomenon still very much open for exploration.

The Roots of AI

At the beginning of the last century, literature received a huge boost.

Authors like Virginia Woolf and Robert Musil thematized the inner life of their protagonists.

The Man Without Qualities was the title of a book by Robert Musil. The inner life of the characters was completely dominated by a stirring outside which made individual traits fade away. (Photo cover of 'Mann ohne Eigenschaften')

The inner self became a projection surface of the outer world. Even in the visual arts, the outer world leaves its mark on the inner.

AI also has little use for the deepest secrets of the individual. Little remains hidden from the penetrating power that AI can generate.

The algorithms of Facebook and X often know more about the secret desires of the user who looks things up on Google, as long as they can be objectified as secret desires or desired services, which you can buy or order. Algorithms often know how to formulate more about the individual than anyone cares to know.

Deeper psychological desires, such as a feeling of injustice or lack of respect that people suffer, remain elusive.

AI cannot yet solve political questions or scientific dilemmas, but AI is still young and can provide good impulses to detect unknown diseases in the body.

Alexa, Facebook's digital coach, is now being trained to assist individuals in mental crises and will also grow enormously in an era where fake and true are gaining ground.

Yet few people will voluntarily fully reveal their inner self to Alexa, permanently giving a green light to express opinions and wishes. This still seems a bridge too far, and perhaps there are "realms of truth" in our inner selves that we do not yet know, and Alexa could lead us down the path.

Cloud Capital

In our book, we publish Yanis Varoufakis' text on Cloud Capital. The core reason why Cloud Capital is rising so much in value is the access to information by individuals that was private. Breaking the boundaries by penetrating the secret world of an individual's inner self is a move that has made firms like Facebook, X, and Amazon the most valuable in the world: Cloud Capital, or data, is the digital gold of today and the future.

Step 2: The 17th Century—Microscopes, Merchants, and Materialism

Fast-forward to 1600s Amsterdam. Dutch traders ruled the seas, scientists invented microscopes, and artists like Rembrandt painted dissected corpses to uncover how bodies worked. Everyone was obsessed with stuff—how matter behaves, how clocks tick, how to profit from it all.

This was the birth of materialism: the belief that reality is just atoms, equations, and things you can measure. Sound familiar? Today, we've swapped atoms for data. Just like 17th-century merchants hoarded spices, companies like Amazon hoard our secrets—what we buy, click, and dream about. Data is the new gold.

The 17th century was the golden age of the Netherlands, both in science and art. It seemed as if the world revolved around Dam Square and the minds of Dutch merchants. The VOC was established as a trading organization to dominate global trade and bring vast profits to Amsterdam.

Overcoming boundaries, the breaking down of borders became the philosophy of merchants and scientists in Holland during the 17th century. Descartes began to view animals as machines rather than mythological creatures.

The focus was primarily on the external world and the exploration of the inner workings of things. Spinoza, the Jewish Amsterdam-based philosopher deeply interested in religious experience, had a side profession in grinding lenses in order to analyze matter and delve deeper into the essence of matter. The journey toward ever smaller particles began.

I would propose the 17th century in Amsterdam symbolically as the beginning of the quest to explore matter from within, as the microscope is a Dutch invention, and delve into the workings of the brain to uncover its hidden secrets. Think, for instance, of the fascination Rembrandt had with Dr. Tulp operating on the skull of a patient. The power of God began definitively to wane the deeper one got into the brain of humans. With these emerging interests, we see a great interest in the workings of things like clocks and endless other instruments and maps for describing material phenomena, as modern time really started.

Step 3: Quantum Physics—Reality's Greatest Wonder

Imagine flipping a coin, but instead of landing on heads or tails, it somehow lands on both at the same time. That's the quantum world in a nutshell. In the 1930s, Niels Bohr discovered that tiny particles (photons) don't follow the rules we're used to. They exist as waves of possibility—until you look at them. Then, poof, they "choose" to act like particles.

Einstein hated this. He famously said, "God does not play dice with the universe." But experiments kept proving him wrong. Quantum physics forced us to admit: Reality isn't fixed. It's shaped by how we observe it. This blew up Plato's idea of a single, perfect truth "out there." Suddenly, science had room for mystery, subjectivity, and philosophy.

Artists loved this. Marcel Duchamp claimed, "It's the viewer that makes the work," turning art into a collaboration between creator and audience. Science and art were both saying: Reality is a conversation, not a monologue.

The discovery of quantum physics was not directly welcomed by everybody. Many people today are still skeptical. The reason is easy to understand: Quantum physics introduces a strange perspective called “the observer.” The “observer” was introduced in the field of analysis of what “matter” constitutes. Niels Bohr said: Photons can only be perceived by an external observer when they change from a wave into physical particles. Particles, the smallest elements of atoms, come into existence only when they are observed. If they are not observed, they remain a wave. Not clear, however, was the definition of observing. Can machines observe, or only humans? Can we observe in a dream, etc.? Nevertheless, the ‘subjective’ element had gained momentum in science, philosophy, and the analysis of what reality really is made of.

In our book is a short essay on quantum physics which describes where we are today with this description of reality seen from a quantum point of view, and why science still struggles with its outcome. The word “struggle” is actually too soft. Scientists tend to want to describe reality as it is without subjective elements. The monologue is still leading. They love equations like $E = mc^2$. Equations make them happy, and often these equations work fine and bring results. However, only within certain barriers. Once reality gets bigger and talk is about the multiverse, not all equations are valid anymore.

“It is the viewer that makes the work,” Marcel Duchamp said in the thirties. Actually, a completely unacceptable sentence: the viewer, the observer creating reality.

The road was paved to break out of common reality and go into different realities, or reality started to double.

Step 4: The 1960s—Tripping into Parallel Universes

The 1960s were like a cosmic fever dream. Hippies dropped LSD and saw kaleidoscope versions of themselves. Scientists like Hugh Everett argued that every decision we make splits the universe into parallel realities (the “many-worlds” theory).

But it was also a period of revolutionary change: the vacuum cleaner and the fridge became popular, and Neil Armstrong expanded the perspective by walking on the moon in 1969 and seeing the Earth from above. Michel Foucault wrote that every era

invents its own version of truth—medieval people saw demons, we see data—and none of them are the “final answer.”

The '60s were an intense period for the invention of ideas and art. Not only was the vacuum cleaner transformed into a sleek machine, but fridges and music from bands like The Beatles also transformed the entire feeling of life. In science, breakthroughs came suddenly with the realization that our universe was just one among many. The metaverse and the many-worlds theory were born. Artists like Andy Warhol anticipated the digital age by creating endless identical copies of originals. Andy Warhol screen-printed Marilyn Monroe's face endlessly, asking: What's original? What's real?

Michel Foucault, in his book *The Order of Things*, made it clear that humans can never fully grasp or describe reality in a definitive way. Every era reveals a portion of reality, which is constantly changing. Old knowledge disappears, new knowledge emerges, but as Foucault noted in a famous conversation with Noam Chomsky, new discoveries often obscure other parts of reality.

The British physicist David Deutsch is the biggest defender of the many-worlds theory, but filmmakers and artists are carried away by this idea; think, for instance, about the film *Avengers: Endgame*, where the hero makes golden circles with fire in order to create a gate to enter a parallel reality.

Scientists are usually against this possibility of parallel universes, and parallel realities are not widely accepted. Since we still have no real grip on what human consciousness is and how strong our knowledge of it might develop in the 21st century, we wait in awe of what the future will bring us. The many-worlds theory is highly interesting, and one has the feeling that science is on the trail of a new worldview, which is not mature yet but growing. It feels as if quantum physics is halfway down a track, and some important aspects are still missing.

Read in this context also the text of Rupert Sheldrake on collective memory, where he speaks of “fields of memory.” The concept of “fields” is still widely open to explore in the future.

But not everyone was enthusiastic in the '60s about all these new discoveries. The more we learned about quantum worlds and parallel worlds, the less solid the ground beneath our feet felt. Plato's cave was crumbling, but what would replace it?

Step 5: The Digital Age—Big Brother Meets Big Data

Fast-forward to today. Companies like Amazon, Facebook, and X (formerly Twitter) mine our lives for data—what we buy, search, and secretly crave. This data is called cloud capital, and it's worth trillions. Why? Because knowing your secrets lets them predict (and control) your next move and your next shopping list.

But there's a twist: Cryptocurrencies like Bitcoin promised to break free from banks and governments. Instead of trusting the "Logos" (Plato's elite guardians of truth), crypto used math to create money anyone could mine. Sounds democratic, right? Not quite. As Finn Brunton warns, crypto's anarchist roots are fading. Now, it's less about freedom and more about new billionaires minting "Trump Coins" and meme currencies.

In his contribution to our book, Finn Brunton makes clear that the deeper aim of cryptocurrencies is to diminish the power of governments and their control over banks and currencies. Instead, either an anarchistic approach is the root of crypto: more freedom to the user, or nowadays a complete surge to power, as we can see in the US with the collaboration of Trump with a few oligarchs.

The digital age makes an end to everything which constructs borders and cherishes an inside and an outside, so in this sense, it is really anti-Platonic.

The digital age is also a double-edged sword: It smashes barriers between public and private, truth and fiction—but hands power to whoever controls the code. The digital age hates boundaries. It invades privacy, blurs truth, and turns everything into tradable data. Plato's cave? More like a glass house.

Step 6: Truth vs. Fake—Why Nobody Agrees Anymore

One of the pillars of both political life, science, and ethics is the distinction between truth and lies.

It seems that this distinction is widely under attack, but to give it up completely, hardly anybody is prepared.

Truth was, in the Platonic tradition, reserved for the entanglement with the Logos and the people who were in charge of controlling the Logos: the male Athenian citizens. All others, like slaves and women, did not participate in this privilege.

Plato linked truth to “Logos”—a sacred, unchanging ideal. But today, truth is a battlefield. Quantum physics says particles can be in two places at the same time. Social media says your truth depends on your tribe. Even science struggles: equations like $E=mc^2$ work... until they don't.

As Slavoj Žižek argues, we're stuck in a world where “truth” is just whatever story wins the most clicks.

Already, the very existence of a so-called “observer” as necessary to make measurements in quantum physics and necessary for proofs of certain scientific experiments made the concept of “truth” not stronger. Think also of the definition in quantum physics that the same particles can be in two different positions at the same time within an atom.

Plato would not have liked these developments; neither was Einstein convinced, and many people feel that the present state of defining truth is open to reevaluation.

But how? In our book, we find a contribution by Slavoj Žižek on ‘Truth’.

Step 7: The Holographic Universe—Are We Just Glitchy NPCs?

One of the key changes in our time is that the distinction between a subjective and an objective world gets a new meaning: they are entangled.

Thomas Hertog noticed in his contribution that Hannah Arendt was already in doubt if generating a so-called “objective” science was a wise thing to do. In her book *The Human Condition*, she argued that the scientist was not value-free. He or she influenced the scientific observations strongly, and this was a good thing.

Value-free science is maybe not a thing of our time anymore, and when we want to get more information on, for instance, the birth of the universe and moreover on the existence of a holographic universe and a planet Earth whose identity might not have been discovered yet, we are open in the 21st century to go ahead with a science where we have definitely said goodbye to Plato.

Our book takes you a good deal on the way to a new definition of what we see when we look at the stars.

Here's the wildest idea yet: When we look at stars, we're seeing light that left them millions of years ago. So... is our “now” just a delayed livestream? Scientists take this

further: What if the entire universe is a hologram? A 3D movie projected from a 2D code we can't see?

It sounds like sci-fi, but even black holes—those cosmic vacuum cleaners—might just be fuzzy holograms. Plato's cave is back, but this time, we're not chained to a wall. We're inside the projector, and AI, quantum computers, and telescopes are our flashlights.

Plato's cave metaphor is haunting us again. But this time, instead of philosophers, we're using AI, quantum computers, and telescopes to ask: What's outside the cave?

The Bottom Line

From Plato's cave to quantum waves to TikTok algorithms, humanity's story is about one thing: chasing the invisible. The future won't give us answers—it'll ask us to embrace uncertainty, rewrite the rules, and maybe laugh at how seriously we once took "truth."